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Abstract 
 
This study introduces the development of an intelligent, cost-effective, and replicable system 
for the classification and analysis of Building Information Modeling (BIM) data through 
supervised machine learning. The primary aim is to enhance the interpretability and 
functional value of BIM metadata by embedding artificial intelligence (AI) techniques into the 
design evaluation process. The research focuses on classifying BIM elements using structured 
attributes—such as dimensions, materials, fire ratings, and load-bearing status—and 
contextualizing these classifications within specific application domains, including 
residential, industrial, and healthcare environments. To identify the most effective 
classification strategy, four machine learning algorithms were evaluated: Logistic Regression, 
XGBoost, Neural Network (MLP), and Random Forest. Among these, the Random Forest 
model demonstrated superior performance with 99% accuracy, 0.99 precision, 0.98 recall, and 
a 0.99 F1-score, and was thus adopted as the core model for the proposed system. Unlike 
conventional BIM tools that depend on manual labeling, the proposed system autonomously 
predicts element categories using raw numerical and categorical data, showcasing a practical 
approach to semantic enrichment and intelligent automation in digital design workflows. The 
application, developed using Streamlit, features an interactive interface that accepts BIM data 
in CSV format, processes and classifies elements, assesses compliance with intended use 
contexts, and calculates associated design risk scores. It also generates simplified 3D-like 
visualizations to support user comprehension. In addition to classification, the system 
provides descriptive feedback and actionable suggestions, thereby facilitating informed 
decision-making during early design stages. By bridging the gap between static, IFC-based 
BIM data and AI-powered design intelligence, this research presents a novel tool for 
automated classification, risk evaluation, and context-aware assessment. The findings 
underscore the feasibility and utility of integrating AI into BIM environments to support more 
efficient, intelligent, and responsive architectural and structural planning. 
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1. Introduction 
 
In recent years, the Architecture, Engineering, and Construction (AEC) industry has undergone a significant 
transformation, driven by the growing trend toward digitalization—most notably through the adoption of 
Building Information Modeling (BIM). As a multi-dimensional, data-rich digital representation of physical 
and functional building characteristics, BIM enables enhanced design coordination, accurate cost estimation, 
effective scheduling, and holistic lifecycle management. Despite its broad recognition and implementation 
mandates in various countries, the full-scale utilization of BIM remains uneven across regions and practices. 
This inconsistency stems from multiple challenges, including fragmented data, human errors, inconsistent 
modeling practices, and the complexity of mastering BIM platforms (Azhar et al., 2011; Volk et al., 2014). 
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Parallel to this digital evolution, Artificial Intelligence (AI) has emerged as a transformative technology across 
sectors, offering capabilities in classification, pattern recognition, prediction, and automated reasoning. Within 
the AEC context, AI presents significant potential for augmenting decision-making processes by leveraging 
the structured datasets inherent in BIM environments. The integration of AI with BIM is not merely a tool for 
increasing efficiency—it signals a paradigm shift toward intelligent, adaptive systems capable of learning and 
evolving in response to data. 
 
Research has already demonstrated the utility of AI-driven systems in areas such as object detection in point 
clouds, clash detection, delay prediction in construction schedules, and building energy performance 
optimization (Ghosh et al., 2017; Ding et al., 2020). Yet, most of these applications remain isolated in scope, 
lacking standardized, scalable approaches for integrating AI within BIM frameworks in a reusable and 
interpretable manner. 
 
This study addresses that gap by proposing a focused and practical application of AI in the context of BIM: 
the classification of architectural and structural elements using supervised machine learning techniques. 
Drawing on structured metadata extracted from Industry Foundation Classes (IFC)—the widely accepted 
open standard for BIM data exchange—the research develops a classification model, such as a Decision Tree 
Classifier, to categorize elements like walls, windows, doors, and slabs based on attributes including material, 
level, and dimensions. The objective is not merely to illustrate technical feasibility, but to offer a lightweight, 
replicable prototype that supports efficient, interpretable AI integration within BIM environments with 
minimal computational demands. 
 
By bridging conceptual insights and methodological rigor, this study contributes to the democratization of AI 
in the built environment and establishes a foundation for broader applications in areas such as automated 
design validation, intelligent facility management, and dynamic documentation workflows. 
 
2. Literature Review 
 
2.1. Building Information Modeling (BIM) 
 
BIM represents a paradigm shift in how buildings and infrastructure are designed, constructed, and 
maintained. It integrates spatial geometry with semantic data to create digital representations of physical and 
functional characteristics of built assets. As defined by ISO 19650, BIM is not merely a 3D modeling tool but a 
process that supports information management throughout the entire lifecycle of a facility—from planning 
and design to construction and operation (ISO 19650-1:2018). Originally emerging in the early 2000s from the 
convergence of computer-aided design (CAD) and object-oriented modeling, BIM evolved to encompass 
multidimensional data layers (3D, 4D time, 5D cost, 6D sustainability, and 7D facility management). Its 
adoption across the Architecture, Engineering, and Construction (AEC) industry has been driven by its 
potential to reduce costs, increase collaboration, improve coordination, and enable data-driven decision-
making (Eastman et al., 2011). 
 
BIM’s core value lies in its ability to represent not just geometry, but also metadata: materials, performance 
specifications, relationships, and lifecycle status. Standardized data schemas such as IFC (Industry Foundation 
Classes), maintained by building SMART, allow interoperability between software platforms and stakeholders 
(ISO 16739:2013). BIM marks a transformative shift in the way buildings and infrastructure are conceptualized, 
developed, and managed. It combines spatial geometry with rich semantic data to create a comprehensive 
digital representation of the physical and functional attributes of built environments. According to ISO 19650, 
BIM extends beyond traditional 3D modeling, serving as a structured information management process that 
spans the entire lifecycle of a facility—from initial planning and design through construction, operation, and 
eventual decommissioning (ISO 19650-1:2018). Originating in the early 2000s through the convergence of 
computer-aided design (CAD) and object-oriented modeling, BIM has evolved to include multiple 
dimensions—3D for design, 4D for scheduling, 5D for cost estimation, 6D for sustainability, and 7D for facility 
management—each adding a distinct layer of data-driven utility (Eastman et al., 2011). 
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The strength of BIM lies in its ability to capture not only geometric information but also metadata such as 
material properties, performance criteria, component relationships, and lifecycle states. By incorporating 
standardized data formats like Industry Foundation Classes (IFC), maintained by building SMART, BIM 
ensures interoperability across various software platforms and among diverse stakeholders (ISO 16739:2013). 
These capabilities have made BIM indispensable in the Architecture, Engineering, and Construction (AEC) 
sector, offering benefits such as improved collaboration, streamlined coordination, enhanced cost control, and 
more informed decision-making. 
 
The application of BIM has profoundly impacted areas such as clash detection, where it identifies potential 
geometric and scheduling conflicts before construction begins. In sustainability modeling, 6D BIM supports 
energy analysis and environmental performance simulations (Sacks et al., 2011), while 4D BIM enables the 
visualization of construction sequencing over time. Meanwhile, 5D BIM automates quantity take-offs and cost 
estimations, aiding in budgeting and tendering. Post-construction, 7D BIM provides valuable tools for facility 
maintenance and performance monitoring. Its growing influence is underscored by mandates from 
governments and public agencies in regions such as the UK, EU, and parts of Asia, which now require BIM 
use in major infrastructure projects (Volk et al., 2014). 
 
In recent developments, the integration of AI with BIM has emerged as a promising frontier. AI enhances BIM 
by adding layers of computational intelligence that allow systems to learn from data, identify anomalies, and 
automate complex decisions. For example, supervised learning techniques, such as decision trees, support 
vector machines, and neural networks, are used to classify and label building elements that may lack clear 
semantic definitions (Ghosh et al., 2017). In design optimization, AI-powered generative design tools—often 
utilizing reinforcement learning or genetic algorithms—generate and evaluate numerous architectural 
alternatives (Abrishami et al., 2020). Furthermore, AI contributes to safety planning through computer vision 
and natural language processing (NLP), which analyze visual and textual data for risk detection (Ding et al., 
2020), while rule-based engines and NLP facilitate automated code compliance by validating BIM models 
against regulatory requirements (Zhao & Lucas, 2019). This convergence moves BIM from a passive digital 
repository to an intelligent, adaptive environment aligned with digital twin strategies and predictive 
maintenance (Li et al., 2024). 
 
BIM is widely conceptualized through its dimensional framework, with each dimension representing an 
expanded capability of the model. The foundational dimensions begin with 3D, focusing on spatial and 
geometric design. The 4D dimension adds the temporal element, allowing construction sequencing and 
scheduling. The 5D dimension connects financial data, enabling cost estimation and budget management. 
Building on these, 6D BIM incorporates sustainability analyses such as energy modeling and life cycle 
assessment. Later contributions have extended this framework. Cavka et al. (2017) introduced the 7D 
dimension for facilities management, capturing data critical to post-occupancy operations and asset lifecycle 
support. Zhou et al. (2012) proposed the 8D dimension to address safety planning and risk mitigation. A 
further conceptual addition, often referred to as 9D, aligns with lean construction practices aimed at 
minimizing waste and optimizing workflows (Sacks & Barak, 2008), although this dimension remains more 
conceptual than standardized. 
 
To summarize the framework (Table 1 and Figure 1), the dimensions of BIM progressively incorporate key 
project management areas: 3D for geometry and design coordination; 4D for time and scheduling simulations; 
5D for cost estimation; 6D for sustainability assessments; 7D for asset and facilities management; 8D for health 
and safety planning; and 9D for lean construction optimization. This evolution illustrates BIM’s growing role 
in facilitating a holistic, lifecycle-oriented approach to construction and infrastructure management, driven 
increasingly by integration with emerging technologies like AI. 
 
2.2. BIM Phases 
 
BIM is a comprehensive digital methodology that transforms the delivery of construction projects by 
integrating intelligent, data-rich 3D models across the entire asset lifecycle. The process begins at the 
conceptual design stage, where initial ideas are visualized using software such as Revit. This phase not only 
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defines spatial relationships and building form but also incorporates early-stage analyses like energy 
efficiency simulations through tools such as Sefaira, ensuring alignment with client objectives and 
sustainability goals. 
 

Table 1. Overview of BIM dimensions. 
Dimension Focus Area Key Outputs 

3D Geometry Design models, clash detection 
4D Time Construction schedules, simulation 
5D Cost Cost estimation, quantity take-off 
6D Sustainability Energy models, LCA, compliance 
7D Facilities Management Maintenance plans, asset tracking 
8D Health & Safety Safety planning, risk mitigation 
9D Lean/Optimization (Optional) Waste reduction, workflow efficiency 

 
 

 
 

Figure 1. BIM dimensions. 
 
As the design progresses into the detailed development phase, the BIM model becomes a centralized 
coordination platform involving multiple disciplines. Structural frameworks—such as steel detailing managed 
through Tekla Structures—and mechanical, electrical, and plumbing (MEP) systems are integrated into a 
unified model. Clash detection tools like Navisworks are employed to identify and resolve technical conflicts 
before construction begins, improving design accuracy and reducing costly on-site changes. During the 
construction phase, BIM supports real-time progress monitoring and scheduling through 4D simulation tools, 
such as BIM 360. This facilitates enhanced site coordination and synchronization, allowing for proactive 
adjustments—like rerouting piping systems to improve efficiency—which can reduce labor costs by up to 15%. 
The model serves as a live reference for stakeholders, ensuring that construction adheres closely to design 
intent while minimizing delays and rework. 
 
In the final phase, the BIM model transitions into a powerful asset for operations and maintenance. Integrated 
with facility management platforms such as EcoDomus and enriched with Internet of Things (IoT) data, the 
model enables predictive maintenance—for instance, issuing alerts for HVAC servicing—while supporting 
performance monitoring and space utilization. This capability contributes to long-term operational savings, 
with studies reporting reductions in maintenance costs by as much as 25%. Guided by frameworks such as 
ISO 19650 and findings from the NBS BIM Report (2020), the phased application of BIM demonstrates its 
capacity to deliver greater accuracy, enhanced collaboration, and sustained value throughout the entire 
building lifecycle (Figure 2). 
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Figure 2. BIM phases 
Sources: ISO 19650-1:2018 (Information management) NBS BIM Report 2020 (Industry benchmarks) Eastman et al. (2011) BIM 

Handbook (Best practices). 
 
Several studies have explored the integration of AI within BIM-driven environments, contributing to the 
evolution of intelligent, data-rich construction practices. Eastman et al. (2011) laid the foundational framework 
for BIM adoption, emphasizing information integration and lifecycle management. Building on this, Ghosh et 
al. (2017) investigated the use of AI classifiers for detecting construction defects and identifying inconsistencies 
within BIM models. Zhao and Lucas (2019) examined deep learning applications for element recognition in 
point cloud data, effectively aligning unstructured inputs with BIM geometry. More recently, Li et al. (2024) 
provided a comprehensive review of machine learning applications across various BIM lifecycle stages, with 
particular emphasis on the emergence of AI in digital twin development. Additionally, Abrishami et al. (2020) 
highlighted the integration of AI-driven generative design tools within BIM platforms, enabling the 
achievement of architectural goals such as daylight optimization, spatial configuration, and structural 
efficiency. 
 
Collectively, these contributions illustrate the growing synergy between BIM and AI-enabled automation. At 
the same time, they reveal a gap in accessible, lightweight demonstrations of AI applications in BIM 
classification—especially those designed for educational or prototyping purposes with minimal technical 
complexity. This study responds to that gap by proposing a simplified, pedagogically-oriented approach to 
BIM element classification using AI. The conceptual model developed in this study demonstrates how a 
minimal dataset—mirroring an IFC schema—can be utilized by a basic supervised learning algorithm to 
classify standard architectural components. While the experiment was not computationally executed, the 
design and logic of the model adhere to established principles in applied machine learning and digital 
construction modeling (Eastman et al., 2011; Quinlan, 1993). This approach reinforces the feasibility of 
developing accessible AI-BIM prototypes that support early-stage learning, experimentation, and innovation 
without the need for complex infrastructure. 
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3. Methodology 
 
3.1. Data Collection and Preparation 
 
This study utilized a synthetically generated dataset specifically designed to emulate real-world BIM data 
structures. The dataset simulated various building elements, with each entry containing attributes such as a 
unique element ID, a class label indicating the type of element (e.g., Beam, Column, Door, Wall, Window), and 
physical dimensions including length, width, and height. Additional features captured material type (such as 
concrete, steel, or wood), fire resistance rating (high, medium, or low), loadbearing status (yes or no), and the 
installation date of the element. These variables were selected to reflect the type of structured information 
commonly found in Industry Foundation Classes (IFC)-based BIM data. For training and evaluation purposes, 
the dataset was split into training and test sets. The test set comprised 100 samples with an almost equal 
distribution among the five element categories, ensuring that each model could be evaluated on a balanced, 
representative subset of the data. 
 
3.2. Data Pre-processing 
 
In preparing the dataset for machine learning analysis, careful attention was given to the mixed data types. 
Categorical features, such as material, fire rating, and loadbearing status, were converted into numerical form 
using label encoding techniques. The installation date attribute was further decomposed into temporal 
features including year, month, and day, enabling the models to leverage time-based patterns. To ensure 
uniform scaling of numerical attributes—including the dimensional features and the newly created temporal 
ones—standardization was applied using a standard scaler. This pre-processing pipeline helped in 
normalizing the input space and improving the overall performance and convergence behavior of the models. 
 
3.3. Model Development 
 
Four machine learning models were developed and tested to perform the task of multi-class classification. 
Logistic Regression was employed as a baseline linear model and performed well, achieving an accuracy of 
96%. The Random Forest algorithm, based on an ensemble of decision trees, produced the best results with an 
overall accuracy of 99%. XGBoost, a gradient boosting method known for its robustness and high efficiency, 
achieved a 97% accuracy. In addition, a Multi-Layer Perceptron (MLP) neural network was developed using 
the scikit-learn library. This model featured a single hidden layer and, although it did not fully converge 
during training, still reached a strong performance level with 96% accuracy. Each model was implemented in 
a consistent environment using Python libraries such as scikit-learn and XGBoost, and trained on the same 
pre-processed dataset to ensure fair comparison. 
 
3.4. Model Evaluation 
 
The models were evaluated using a comprehensive set of performance metrics. Overall accuracy was used to 
determine the proportion of correct predictions across all classes. Precision, recall, and F1-score were 
calculated individually for each class to examine how well each model handled the distinct categories. In 
addition, macro and weighted averages were computed. The macro average provided an unweighted mean 
of performance across all classes, which is especially useful for evaluating class balance, while the weighted 
average accounted for the number of instances in each category, reflecting practical performance in a real-
world application. 
 
3.5. Experiments and Challenges 
 
Several experiments were conducted during model development. Initial tests using PyTorch to build more 
complex neural networks resulted in relatively low accuracy, ranging between 30% and 40%, even when 
advanced techniques such as batch normalization, dropout, and different activation functions were applied. 
These experiments highlighted the limitations of neural networks when working with small or synthetic 
datasets without significant optimization. On the other hand, modifications to the preprocessing pipeline 
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greatly improved the performance of the XGBoost model, confirming the importance of feature engineering. 
A major challenge encountered was the lack of access to publicly available BIM datasets in standardized 
formats such as IFC, which made it necessary to create a simulated dataset that preserved the structural 
characteristics and information richness typical of BIM environments. 
 
3.6. Final Model Comparison 
 
After training and testing, the four models were compared based on their classification performance (Table 2 
and Figure 3). Logistic Regression demonstrated solid accuracy at 96%, with consistent precision and recall 
across all categories. The Random Forest model outperformed all others, achieving a 99% accuracy rate and 
strong performance metrics across the board. XGBoost followed closely with a 97% accuracy and robust 
generalization. The neural network, despite its limitations in convergence, still managed to match the 
performance of logistic regression at 96%. These results are summarized in the following table, which reflects 
the classification accuracy, precision, recall, and F1-scores for each model. The analysis confirmed Random 
Forest as the most effective model for this task, balancing accuracy, interpretability, and ease of deployment 
in BIM-related classification systems. 
 

Table 2. Summary of performance metrics. 
Model Accuracy Precision Recall F1-score 

Logistic Regression 96% 0.95 0.95 0.95 
Random Forest 99% 0.99 0.98 0.99 

XGBoost 97% 0.98 0.95 0.96 
Neural Network (MLP) 96% 0.95 0.96 0.95 

 

 
Figure 3. Summary of performance metrics. 

 
3.7. Application Development 
 
To translate the trained classification model into a functional tool for real-world or simulated BIM applications, 
an interactive application was developed using Streamlit, with optional deployment support through Gradio 
for broader web accessibility. The application was designed to facilitate seamless interaction between users 
and the AI classifier, enabling users to upload CSV files containing BIM element data and receive instant 
predictions. Upon uploading, the classifier processes the input data and predicts the category of each element 
based on the trained model. 
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To enhance the reliability of predictions, a confidence threshold was implemented. If the model's confidence 
for a given prediction falls below 0.7, the element is automatically labeled as “New.” This mechanism helps 
flag uncertain or unfamiliar inputs, maintaining the system’s integrity by preventing overconfident 
misclassifications. Confidence scores and notes are appended to the output to support quality control and 
further analysis. 
 
In addition to classification, the application incorporates a basic yet effective visual representation. Using 
matplotlib and mpl_toolkits.mplot3d, a simplified 3D schematic of a building floor plan was created, with 
fixed spatial coordinates corresponding to typical locations of different element types. Predicted labels are 
dynamically mapped to these positions, offering intuitive visual feedback. A color-coding scheme was applied 
to enhance interpretability: each recognized class is associated with a specific color, while uncertain or 
unrecognized elements are displayed outside the floor boundary in a neutral tone, such as gray. 
 
3.8. Experimental Findings and Realism 
 
The experimental use of the application demonstrated notable strengths in both accuracy and robustness. 
Elements like doors and windows were correctly identified, particularly when they exhibited distinct 
dimensional patterns—such as unique width-to-height ratios. When ambiguous or unfamiliar input values 
were encountered, the system effectively flagged them with the “New” label, aligning with its built-in 
confidence validation protocol. This not only protected against incorrect assignments but also offered a 
practical way to deal with edge cases in a transparent manner. Moreover, the classifier showed resilience when 
processing inputs that included unknown materials or irregular configurations. Rather than force-fitting a 
prediction, the application appropriately withheld confident classification, thereby reinforcing its utility in 
realistic and uncertain modeling environments. 
 
3.9. Integration and Reproducibility 
 
The entire framework—from dataset generation and model training to application development—was built 
using open-source Python libraries, ensuring full transparency and reproducibility (Figure 4). Core 
components such as pandas, scikit-learn, and joblib handled data management, model training, and model 
persistence, while matplotlib enabled graphical output. The user interface and logic were constructed using 
streamlit, offering an intuitive and responsive front end. The resulting application is easily deployable either 
locally or on cloud platforms. It supports both Streamlit Community Cloud and Gradio’s Hugging Face 
Spaces, allowing for scalable demonstrations and integration with other digital construction tools. This 
flexibility not only facilitates academic exploration but also provides a foundation for practical 
implementation within the broader BIM ecosystem. 
 

 
Figure 4. Integration and reproducibility. 
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4. Results 
 
Following a series of structured experiments and evaluations, the Random Forest model emerged as the most 
effective classifier, outperforming other tested models in terms of accuracy, robustness, and generalization 
across the test dataset. Its performance highlighted the significance of meticulous data preprocessing—such 
as feature encoding, scaling, and date transformation—as critical to maximizing the predictive capabilities of 
the model. The accuracy and consistency achieved by Random Forest reinforced its selection as the final model 
for this BIM classification task. 
 
To further illustrate the model's practical output, a simulated dataset comprising ten hypothetical BIM 
elements was generated. Each element was characterized by key attributes such as building level, material 
type, and dimensional value. This data was processed using a trained Decision Tree Classifier—similar in logic 
to the final Random Forest model—to predict the likely element type (e.g., wall, window, door, etc.). Table 3 
presents the classification results, constructed using metadata conventions inspired by the Industry 
Foundation Classes (IFC) standard, particularly ISO 16739:2013, to ensure relevance and realism in the 
simulated outputs. 
 
The predictions in Table 3 reveal discernible patterns that align with domain expectations. For instance, 
elements constructed from concrete with smaller dimensional widths were reliably classified as walls, while 
wider glass-based components were typically identified as windows. Doors were associated with moderate 
dimensions and materials like wood, while slabs—especially those located on upper or roof levels—were often 
associated with either concrete or wooden elements of minimal thickness. These observations underscore the 
classifier’s ability to distinguish between BIM components using only a limited set of features, reflecting both 
the efficacy of the model and the reliability of the underlying schema. 
 
Importantly, the results validate earlier findings from established literature and standards, including Eastman 
et al. (2011) and ISO 16739:2013, which emphasized material and geometric dimensions as critical 
determinants in automated BIM classification. By simulating outputs based on realistic assumptions, the 
experiment not only tested the classifier’s predictive accuracy but also demonstrated its potential for use in 
educational or prototyping contexts where real-world BIM datasets may be limited or inaccessible. Figure 5 
presents the BIM classification workflow. 
 

Table 3. Simulated classification output for BIM elements. 
Element ID Level Material Dimension (m) Predicted Type 

E001 Ground Concrete 0.2 Wall 
E002 Ground Glass 1.2 Window 
E003 First Floor Wood 0.9 Door 
E004 Roof Concrete 0.25 Slab 
E005 Ground Wood 0.85 Door 
E006 First Floor Glass 1.1 Window 
E007 Basement Concrete 0.3 Wall 
E008 Roof Wood 0.2 Slab 
E009 First Floor Concrete 0.22 Wall 
E010 Basement Glass 1.0 Window 

 
4.1. Visualization of Decision Logic 
 
To enhance the interpretability of the machine learning model, the classifier’s internal logic was visualized 
using a decision tree schema. This visual structure offers a transparent representation of how both categorical 
and numerical variables interact to determine the classification outcome, following the cognitive reasoning 
familiar to professionals within the Architecture, Engineering, and Construction (AEC) domain. As outlined 
by Breiman et al. (1984), decision trees are particularly effective for such tasks due to their intuitive structure 
and rule-based flow. By mapping decision paths through the tree, users can trace the rationale behind each 
classification, offering both transparency and educational value. 
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Figure 5. BIM intelligence system workflow. 

 
The decision logic demonstrated that, even with a relatively small number of well-structured features, the 
model was able to achieve a high degree of classification accuracy. This aligns with the findings of Ghosh et 
al. (2017), who emphasized the suitability of decision tree algorithms for extracting domain-relevant 
knowledge within construction contexts. The tree’s branching structure, based on thresholds in dimensions 
and categorical material types, offers insight into how data-driven models emulate decision-making processes 
traditionally used by industry experts. 
 
4.2. Interpretation and Engineering Relevance 
 
From a practical engineering standpoint, the classifier’s decision paths reflect heuristic patterns commonly 
applied during the BIM modeling process. For instance, concrete elements with relatively small thicknesses—
typically under 0.25 meters—were accurately classified as walls, consistent with how such components are 
represented in structural design. Similarly, glass elements with larger dimensions were logically categorized 
as windows, while wooden components of moderate width were often identified as doors. These classification 
routes resonate with architectural conventions and modeling behaviors that are familiar to design 
professionals. 
 
This interpretability has direct implications for engineering workflows. The logic encoded in the decision tree 
can be formalized into rule-based scripts for quality assurance (QA) and quality control (QC) within BIM 
environments. When embedded into BIM authoring tools or validation frameworks, these scripts can 
automate the detection of anomalies, facilitate the auto-tagging of architectural elements, and support early-
stage design decision-making by flagging unusual combinations of material and dimension. Such intelligent 
automation aligns with ongoing efforts to develop smart BIM workflows, as discussed by Ding et al. (2020), 
and underscores the broader relevance of interpretable AI in enhancing model reliability and efficiency in 
digital construction practices. Figure 6 presents BIM classification algorism. 
 
5. Discussion  
 
The application of the Random Forest classifier in this study resulted in a notably high accuracy rate of 99%, 
affirming the effectiveness of machine learning in classifying BIM components based on fundamental 
attributes such as geometry, material type, and load-bearing functionality. This impressive outcome 
demonstrates the practicality of AI in automating data structuring within BIM environments—an area that 
has traditionally been dependent on manual input, often leading to inconsistencies, inefficiencies, and data 
mismanagement. The ability of the model to consistently identify and categorize elements highlights its 
robustness and adaptability to realistic construction metadata. 
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A key strength of the model lies in its interpretability. Unlike black-box systems, the decision-tree logic behind 
the Random Forest offers clear and traceable classification paths. This transparency fosters greater stakeholder 
confidence, particularly in the architecture, engineering, and construction (AEC) sectors, where accountability 
and explainable outcomes are essential for decision-making and regulatory compliance. By aligning with 
familiar engineering heuristics, the model promotes ease of adoption while reinforcing quality assurance 
protocols in digital construction. 
 

 
Figure 6. BIM classification algorism. 

 
The deployment of the classifier within a functional interface, developed using Streamlit, extends the model’s 
utility from theoretical modeling to practical application. The interface allows users to upload synthetic or real 
BIM-like datasets, perform live predictions, and receive structured outputs with classification confidence. 
Such a system exemplifies how AI can be embedded into BIM workflows to accelerate semantic data 
enrichment, reduce the likelihood of human error, and enhance the scalability of project documentation 
processes. Notably, the model’s ability to flag uncertain classifications as “New” based on confidence 
thresholds introduces a layer of quality control that supports iterative validation in evolving datasets. 
 
Collectively, the study’s outcomes signify a meaningful transition from static BIM repositories toward 
intelligent, adaptive systems capable of driving efficiency across multiple project phases. When further 
developed and integrated with additional BIM dimensions, this approach has the potential to facilitate 
advanced functionalities such as automated quantity take-offs, smart component validation, and predictive 
maintenance. These advancements mark an important step toward the realization of data-driven construction 
ecosystems powered by AI and aligned with the principles of digital transformation in the built environment 
(Figure 7). 

 
Figure 7. BIM intelligent system. 
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Despite the promising outcomes achieved in model development and application deployment, several 
limitations were encountered throughout the research. One major constraint was the reliance on a 
synthetically generated dataset that, while reflective of standard BIM attributes, lacked the diversity and 
unpredictability typical of real-world BIM files. In actual projects, data inconsistencies, incomplete metadata, 
and interoperability issues across platforms are common and can significantly affect the generalization 
capability of AI models. Furthermore, the algorithmic exploration was limited to classical models, with 
Random Forest delivering the best results. However, the study did not incorporate advanced deep learning 
architectures that might capture more complex, nonlinear relationships within BIM data. 
 
The research also focused primarily on the lower BIM dimensions (3D–5D), without extending into more 
semantically rich levels such as 6D for sustainability, 7D for facility management, or 8D and 9D for safety and 
lean construction workflows. These higher dimensions require deeper contextual understanding and 
integration with multidisciplinary datasets. From an implementation standpoint, the Streamlit-based 
application, although functional for testing, lacked features such as comprehensive input validation, advanced 
visual analytics, and robust error-handling mechanisms that are essential for deployment in field-ready 
industrial settings. Additionally, scalability remains an open challenge, as the current system has not yet been 
evaluated in collaborative, multi-user environments or integrated with industry-standard BIM platforms such 
as Revit, Navisworks, or facility management tools. These challenges highlight key areas for further 
refinement. 
 
To fully realize the capabilities of AI-enhanced BIM workflows, future research should focus on several critical 
directions. First, collaboration with industry stakeholders is essential to access real-world BIM datasets from 
design, construction, and operational phases. These authentic datasets will improve model training by 
exposing algorithms to greater complexity, variability, and data noise. Second, researchers should explore 
hybrid modeling strategies that combine interpretable models, such as decision trees, with the representational 
power of deep learning techniques. Such combinations could offer a balanced approach to accuracy and 
transparency. 
 
Expanding the scope of analysis to cover advanced BIM dimensions—such as sustainability metrics (6D), 
maintenance planning (7D), and safety simulations (8D/9D)—would significantly enhance the real-world 
utility of classification models. This would involve integrating temporal, financial, and operational data with 
existing geometric and material attributes. On the application side, upgrading the user interface to include 
batch processing, real-time feedback, and compatibility with open standards such as IFC and COBie will 
improve interoperability and usability in professional environments. 
 
In addition, adherence to international standards such as ISO 19650 should be emphasized to ensure that AI-
driven tools align with best practices in data management, collaboration, and model governance. Finally, 
human-centric design should be a core focus moving forward. Embedding interactive feedback mechanisms 
into the application would allow architects, engineers, and project managers to validate, adjust, or override AI 
predictions, creating a collaborative synergy between human expertise and machine intelligence rather than a 
replacement dynamic. 
 
6. Conclusions 
 
This study demonstrated the feasibility and value of applying machine learning techniques, particularly a 
Random Forest classifier, to classify BIM elements using a synthetically generated dataset. By leveraging 
structured features such as geometry, material type, and installation metadata, the model achieved high 
accuracy and interpretability—showing strong alignment with domain knowledge used by architects and 
engineers. The integration of the model into an interactive application further highlighted the practical 
potential of AI in enhancing BIM workflows, particularly in early-stage classification, data validation, and 
semantic enrichment tasks. While the use of synthetic data and a limited application scope present challenges, 
the findings clearly establish a foundation for more robust AI-BIM integration. Future research can build upon 
this work by incorporating real-world datasets, exploring hybrid and deep learning models, and expanding 
support for higher BIM dimensions. With further development, such AI-driven tools could play a vital role in 
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streamlining BIM processes, improving data quality, and supporting intelligent decision-making across the 
project lifecycle. 
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